09-监控
系统监控
我为你介绍一种专门用于性能监控的 USE(Utilization Saturation and Errors)法。USE 法把系统资源的性能指标,简化成了三个类别,即使用率、饱和度以及错误数。 • 使用率,表示资源用于服务的时间或容量百分比。100% 的使用率,表示容量已经用尽或者全部时间都用于服务。 • 饱和度,表示资源的繁忙程度,通常与等待队列的长度相关。100% 的饱和度,表示资源无法接受更多的请求。 • 错误数表示发生错误的事件个数。错误数越多,表明系统的问题越严重。 这三个类别的指标,涵盖了系统资源的常见性能瓶颈,所以常被用来快速定位系统资源的性能瓶颈。这样,无论是对 CPU、内存、磁盘和文件系统、网络等硬件资源,还是对文件描述符数、连接数、连接跟踪数等软件资源,USE 方法都可以帮你快速定位出,是哪一种系统资源出现了性能瓶颈。
![[Pasted image 20260108222628.png]]
应用监控
系统监控的核心是资源的使用情况,这既包括CPU、内存、磁盘、文件系统、网络等硬件资源,也包括文件描述符数、连接数、连接跟踪数等软件资源。而要描述这些资源瓶颈,最简单有效的方法就是 USE 法
应用程序的核心指标,不再是资源的使用情况,而是请求数、错误率和响应时间。这些指标不仅直接关系到用户的使用体验,还反映应用整体的可用性和可靠性。
有了请求数、错误率和响应时间这三个黄金指标之后,我们就可以快速知道,应用是否发生了性能问题。但是,只有这些指标显然还是不够的,因为发生性能问题后,我们还希望能够快速定位“性能瓶颈区”。所以,在我看来,下面几种指标,也是监控应用程序时必不可少的。
第一个,是应用进程的资源使用情况,比如进程占用的 CPU、内存、磁盘 I/O、网络等。使用过多的系统资源,导致应用程序响应缓慢或者错误数升高,是一个最常见的性能问题。
第二个,是应用程序之间调用情况,比如调用频率、错误数、延时等。由于应用程序并不是孤立的,如果其依赖的其他应用出现了性能问题,应用自身性能也会受到影响。
第三个,是应用程序内部核心逻辑的运行情况,比如关键环节的耗时以及执行过程中的错误等。由于这是应用程序内部的状态,从外部通常无法直接获取到详细的性能数据。所以,应用程序在设计和开发时,就应该把这些指标提供出来,以便监控系统可以了解其内部运行状态。
有了应用进程的资源使用指标,你就可以把系统资源的瓶颈跟应用程序关联起来,从而迅速定位因系统资源不足而导致的性能问题;
• 有了应用程序之间的调用指标,你可以迅速分析出一个请求处理的调用链中,到底哪个组件才是导致性能问题的罪魁祸首;
• 而有了应用程序内部核心逻辑的运行性能,你就可以更进一步,直接进入应用程序的内部,定位到底是哪个处理环节的函数导致了性能问题。
RED 方法,是 Weave Cloud 在监控微服务性能时,结合 Prometheus 监控,所提出的一种监控思路——即对微服务来说,监控它们的请求数(Rate)、错误数(Errors)以及响应时间(Duration)。所以,RED 方法适用于微服务应用的监控,而 USE 方法适用于系统资源的监控。
最后更新于